
Ge et al. The Journal of Headache and Pain           (2023) 24:17  
https://doi.org/10.1186/s10194-023-01544-x

RESEARCH

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

The Journal of Headache
                           and Pain

Alteration of the cortical morphology 
in classical trigeminal neuralgia: voxel-, 
deformation-, and surface-based analysis
Xiuhong Ge1,2†, Luoyu Wang1,2†, Lei Pan1, Haiqi Ye1, Xiaofen Zhu1, Sandra Fan3, Qi Feng1, Quan Du4*†, 
Wenhua Yu4*† and Zhongxiang Ding1,2*†   

Abstract 

Objective This study aimed to combine voxel-based morphometry, deformation-based morphometry, and surface-
based morphometry to analyze gray matter volume and cortex shape in classical trigeminal neuralgia patients.

Methods This study included 79 classical trigeminal neuralgia patients and age- and sex-matched 81 healthy 
controls. The aforementioned three methods were used to analyze brain structure in classical trigeminal neuralgia 
patients. Spearman correlation analysis was used to analyze the correlation of brain structure with the trigeminal 
nerve and clinical parameters.

Results The bilateral trigeminal nerve was atrophied, and the ipsilateral trigeminal nerve volume was smaller than 
the contralateral volume in the classical trigeminal neuralgia. The gray matter volume of Temporal_Pole_Sup_R 
and Precentral_R was found to be decreased using voxel-based morphometry. The gray matter volume of Tempo-
ral_Pole_Sup_R had a positive correlation with disease duration and a negative correlation with the cross-section area 
of the compression point and the quality-of-life score in trigeminal neuralgia. The gray matter volume of Precentral_R 
was negatively correlated with the ipsilateral volume of the trigeminal nerve cisternal segment, cross-section area 
of compression point, and visual analogue scale. The gray matter volume of Temporal_Pole_Sup_L was found to be 
increased using deformation-based morphometry and had a negative correlation with the self-rating anxiety scale. 
The gyrification of the middle temporal gyrus_L increased and the Postcentral_L thickness decreased, as detected 
using surface-based morphometry.
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Introduction
Classical trigeminal neuralgia (CTN) is a chronic neu-
rogenic pain distributed in the trigeminal sensory 
area [1–3], characterized by sudden, transient, electric 
shock-like pain [4]. Most patients present with purely 
paroxysmal pain, whereas some of them present with 
concomitant continuous pain [5, 6] which up to 49 
percent [7, 8]. The pain is often triggered by the harm-
less actions in daily life (washing face, eating, brushing 

teeth, etc.) and is called the worst pain that human 
beings can endure [4].

According to the third edition of the International 
Classification of Headache Disorders (ICHD-3), CTN 
develops without any apparent cause other than neuro-
vascular compression (NVC), which producing major 
morphological changes on the trigeminal nerve root 
[6, 9, 10]. NVC can cause demyelination of the nerve 
near the compression point, resulting in a short circuit 

Conclusions The gray matter volume and cortical morphology of pain-related brain regions were correlated with 
clinical and trigeminal nerve parameters. voxel-based morphometry, deformation-based morphometry, and surface-
based morphometry complemented each other in analyzing the brain structures of patients with classical trigeminal 
neuralgia and provided a basis for studying the pathophysiology of classical trigeminal neuralgia.
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between the fibers involved in pain production and 
those mediating light touch, causing the pain [11]. NVC 
can cause a reduction in trigeminal nerve (TGN) vol-
ume. A study of the postoperative histopathological 
parameters showed axon atrophy and demyelination 
of the TGN in patients with trigeminal neuralgia (TN) 
[12]. The imaging also showed that the ipsilateral TGN 
atrophy [1, 13–15] and the cross-sectional area (CSA) 
of the compression point were smaller [16] in patients 
with CTN compared with healthy controls (HCs).

A certain correlation existed between the TGN mor-
phology and the changing brain structure of patients 
with CTN [17, 18]. Many recent studies showed that 
the brain structure changed in patients with CTN, 
which included the gray matter volume (GMV) [2, 12, 
16, 19–27] and cortical morphology. The brain regions 
in which the GMV changed were mainly the frontal 
lobe, temporal lobe, parietal lobe, thalamus, hippocam-
pus, and cerebellum; the GMV changed differently in 
different studies. The changes in cortical morphology 
mainly included the cortical thickness [19, 26, 28–32], 
local gyrification index (LGI) [28, 30], sulcal depth [30], 
surface area, and myelin level [31].

Voxel-based morphometry (VBM) compares the local 
GMV at the voxel level, converting brain images into 
standard space to compensate the global differences and 
preserve the local differences in the distribution of gray 
matter (GM) cortex [33, 34]. Deformation-based mor-
phometry (DBM) characterizes the differences in the 
vector fields, which describe global differences in the 
brain shape [35]. The two methods provide a compre-
hensive assessment of anatomical differences throughout 
the brain cortex [36, 37]. DBM is more sensitive to the 
atrophy of subcortical areas [38, 39] and the anatomical 
information exists in the deformation field [40]. Some 
studies suggested that DBM could replace VBM [41]. 
Other studies also found that the brain regions detected 
by the two methods were similar; only the clusters were 
different [42].

Surface-based morphometry (SBM) matches the gyra-
tion and groove geometry to the spherical map of the 
expansion, which greatly reduces the potential misalign-
ment caused by complex folding patterns and the change 
in global volume [43]. Different from VBM and DBM that 
analyze the GMV, SBM is used to examine different char-
acteristics of the cortex, for example, cortical thickness, 
sulcal depth, surface area, gyrification, and so on [43]. 
The aforementioned three methods provided the meas-
urement of the brain structure, not redundant informa-
tion [43, 44]. They revealed different aspects of the brain 
structure, implying that combined the three methods 
may further contribution to the study of neurogenic dis-
eases. The combination of the three methods focuses on 

the Parkinson’s disease [42, 45], musical training [46], and 
chronic stroke [47], but has not been applied to CTN.

In this study, we combined VBM, DBM, and SBM to 
analyze the brain structure in patients with CTN. Our 
hypotheses were as follows. First, the GMV and cortical 
morphology of the pain-related brain regions in patients 
with CTN changed. Second, some of the changes in the 
brain included corrections in clinical parameters, such as 
visual analogue scale (VAS) scores, disease duration, and 
so on. Finally, the VBM, DBM, and SBM methods com-
plemented each other in analyzing the brain structure 
of patients with CTN and providing a basis for studying 
CTN pathophysiology.

Materials and methods
The local ethics committee of the Affiliated Hangzhou 
First People’s Hospital, Zhejiang University School of 
Medicine approved this prospective study (IRB# No. 
202107002). The study was carried out following the Dec-
laration of Helsinki. All the participants provided written 
informed consent.

Participants
A total of 88 patients with CTN and 85 age- and sex-
matched HCs were recruited from the Affiliated Hang-
zhou First People’s Hospital, Zhejiang University School 
of Medicine. The inclusion criteria for patients with 
CTN were as follows: (1) patients diagnosed with CTN 
according to ICHD-3 [6], which is that the CTN devel-
oping without apparent cause other than neurovascular 
compression [demonstration on MRI or during surgery 
of neurovascular compression (not simply contact), with 
morphological changes in the trigeminal nerve root]; 
(2) unilateral pain in the distribution of one or more 
branches of the TGN; (3) conventional magnetic reso-
nance imaging (MRI) T1WI and T2WI sequence exami-
nations revealing no evident abnormal brain signals; 
(4) no additional neurological or sensory deficits in all 
patients; (5) no previous surgical or other invasive proce-
dures for CTN; (6) no contraindications to MRI; (7) aged 
20–70  years; and (8) right-handedness. The exclusion 
criteria were as follows: (1) patients with CTN under-
going surgical treatment; (2) headaches, or other parox-
ysmal or chronic pain conditions; (3) a family history of 
headache or other types of pain in first-degree relatives; 
(4) other somatic or psychiatric conditions; and (5) con-
traindications to MRI. The inclusion criteria for the HCs 
were as follows: (1) age between 20 and 70  years; (2) 
good physical condition, with no history of tumors and 
mental diseases; (3) right-handedness; and (4) consent 
to join the study. The exclusion criteria were as follows: 
(1) headache or other chronic pain diseases; (2) MRI for 
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contraindications, such as claustrophobia; and (3) severe 
hypertension, diabetes, and other diseases affecting brain 
function.

Neuropsychological assessments
The psychiatrist evaluated the clinical psychological sta-
tus of all participants. The quality-of-life score of patients 
with TN (TN QOLS) was used to assess the quality of 
life, including four dimensions: symptoms, physical func-
tion field, psychology (or emotion) field, and society 
(including family relationships) [48]. The mini-mental 
state examination (MMSE), the self-rating depression 
scale (SDS), and the self-rating anxiety scale (SAS) were 
used to evaluate cognitive function, depression, and anxi-
ety symptoms.

Pain evaluation
The VAS was used to assess the intensity of trigeminal 
neuralgia in patients with CTN in the last week. The 
researchers guided patients with CTN in rating their pain 
on a scale of 0–10 using a 10-cm ruler, with the higher 
score indicating greater pain intensity. A score of “0” rep-
resented no pain, and a score of “10” meant intolerable 
pain.

MRI acquisition and analysis
All participants underwent MRI using a 3.0 T MRI scan-
ner (Siemens, MAGNETOM Verio, Germany) and an 
eight-channel phased-array head coil. The 3D damage-gra-
dient echo sequences were used to collect functional data. 
The parameters were as follows: 176 structural images,

repetition time (TR) = 1900 msec, echo time (TE) = 2.52

msec, thickness = 1 mm, field of view (FOV ) = 256 × 256 mm2, . 
Trigeminal 3D volume interpolation body part examina-
tion (3D-VIBE) data were acquired using the following 
parameters: TR = 10 ms, TE = 3.69 ms, flip angle = 12◦,

×220mm2, voxelsize = 0.8 × 0.8 × 0.8mm3, slice thickness

0.8 mm, and 60 slices . The 3D short-time inversion 
recovery (3D-STIR) data were acquired using the following 
parameters: SPC sequence, TR = 3800 ms, TE = 194 ms,

FOV = 230 × 230mm2, voxelsize = 0.9 × 0.9 × 0.9mm3,

slice thickness = 0.9 mm, and 64 slices.

Imaging processing
In this study, we used the three methods (VBM, DBM, 
and SBM) based on the computational anatomy tool-
box  12.8.1 (CAT12.8.1, https:// neuro- jena. github. io/ 
cat/), an SPM12 extension with the default pipeline. For 
the 3D-T1WI data, we inspected each volume for any 
artifact that could affect the processing, such as segmen-
tation, normalization, and so forth.

VBM analysis
The spatial adaptive nonlocal mean filter [49] was used 
as the first step because noise estimation and de-noising 
worked the best for original (non-interpolated) data. 
Then, the affine-registered (to further improve the out-
comes of the segmentation) was made, and the center 
of mass was used to roughly correct for differences in 
the position between the image and the template. The 
3D-T1WI were segmented into different tissue types, 
including GM, white matter (WM), and cerebrospinal 
fluid (CSF). Subsequently, we used the affine registration 
algorithm to record all the native-space tissue segments 
to the standard Montreal Neurological Institute (MNI) 
template and resample them to 1.5 × 1.5 × 1.5  mm3 [50, 
51]. The use of the diffeomorphic anatomical registra-
tion through exponentiated algebra toolbox (DARTEL) 
was necessary to refine the inter-subject registration via 
the application of the diffeomorphic anatomical reg-
istration. The images were also modulated to preserve 
GM data and minimize the distortion of normalization. 
Finally, an 8-mm full width at half maximum (FWHM) 
Gaussian filter was applied to allow statistical analysis 
[19, 52, 53].

DBM analysis
The 3D-T1WI was converted into a DBM map for each 
participant using a procedure described previously [41]. 
The resulting nonlinear transformation from previ-
ous VBM analysis was inverted to obtain the deforma-
tion fields that mapped voxel coordinates in the subject 
native space (χ1, χ2, χ3) to equivalent voxels in the MNI 
template [u1(χ); u2(χ); u3(χ)]. Then, the Jacobian matrices 
of the deformation were generated and estimated using 
the first-order approximation. The Jacobian determinant 
minus one (|J| – 1) was calculated as the voxel-wise rela-
tive deformation value to create DBM maps. This value 
represented the factor by which each voxel of the partici-
pant’s brain expanded (positive value) or shrank (negative 
value) during registration to the MNI template [41] and 
was resampled to 1.5 × 1.5 × 1.5  mm3 [50, 51]. Finally, an 
8-mm FWHM Gaussian filter was applied to allow statis-
tical analysis.

SBM analysis
The analysis was semi-automated by applying default 
parameters for all processing steps, as described by Nid-
dam et  al. [43]. The cortical thickness was estimated 
using a projection-based methodology by calculating 
the distance between the inner (boundary between WM 
and GM) and outer (boundary between GM and CSF) 
cortical surfaces [19]. Importantly, this projection-based 
thickness allowed the appropriate handling of partial 

https://neuro-jena.github.io/cat/
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volume information, sulcal blurring, and sulcal asym-
metries without explicit sulcus reconstruction [54]. This 
step provided the topological correction for defects in 
the surface mesh as well as for spherical inflation and 
spherical registration [30, 43]. The application of an 
adapted DARTEL algorithm during spherical registra-
tion enabled inter-subject analysis by mapping the matrix 
onto a standardized spherical surface. The right and left 
hemispheres were then merged into a single mesh, resa-
mpled to a template space (resolution 164 k mesh) [55], 
and spatially smoothed. Three additional geometric cor-
tical measures, including sulcal depth (The sulcal depth 
refers to the depth of the grooves or "fissures" on the 
surface of the brain and is thought to reflect the folding 
pattern of the cerebral cortex), cortical complexity [Cor-
tical fractal dimension is a measure of the complexity of 
the cerebral cortex, and it can be calculated by analyz-
ing the pattern of folding on the surface of the brain and 
the cortical complexity (fractal dimension) was calcu-
lagted on the paper described in Yotter] [56], and gyri-
fication (The gyrification is a measure of the complexity 
and folding of the cerebral cortex, which can be extracted 
based on the absolute mean curvature of the brain sur-
face) [57], were also derived. A 15-mm FWHM Gauss-
ian kernel was used for smoothing the cortical thickness 
images, while a 20-mm FWHM Gaussian kernel was 
used for other parameters as recommended [19, 43]. The 
smoothed images were used for between-group analyses, 
as described later.

TGN cisternal segment volume analysis
The 3D-VIBE or 3D-STIR images were used for the vol-
ume of the TGN cisternal segment (TGNcV) and CSA 
of the compression point analysis. The manual segmen-
tation of the TGN cisternal segment from its emergence 
at the pons to its entry at Meckel’s cave slice by slice in 
the axial plane and CSA of the compression point (i.e., 
the entire cisternal segment) was performed with the 
uAI Research Portal (United Imaging Intelligence, China) 
embedded into the widely used package PyRadiomics 
(https:// pyrad io. mics. readt hedocs. io/ en/ latest/ index. 
html) by a junior physician with 4  years of experience 
and a senior physician with 9  years of experience. The 
TGNcVs were calculated for comparison in the following 
ways: ipsilateral and contralateral to the side of pain in 
patients with CTN; the average of HCs [(right + left)/2]. 
The analysis of delineation consistency between the jun-
ior and senior physicians was performed using the intra-
class correlation coefficient (ICC).

Statistical analysis of clinical parameters and TGN 
structure.

The statistical analyses of clinical variables were con-
ducted using SPSS software (version 26). The differences 

between groups were examined with independent-sam-
ple t tests for continuous data (age, VAS score, MMSE 
score, pain frequency, TGNcV, and so on) and with the 
chi-squared test for sex. The statistical significance was 
defined as P < 0.05.

Statistical analysis of structural images
The between-group differences in cortical thickness, sul-
cal depth, cortical complexity, gyrification (by SBM), and 
GMV (by DBM and VBM) were assessed with two-sam-
ple t tests controlling for age and sex. Total intracranial 
volume was also used as the covariate in the VBM mod-
els [49, 50, 58]. The two groups were compared in multi-
ple ways: DBM and VBM based on GRF (voxels P < 0.001, 
clusters P < 0.05) and SBM based on family-wise error 
(FWE, voxels P < 0.001, clusters P < 0.05). Spearman cor-
relations were performed on pain characteristics (dis-
ease duration, VAS, pain frequency, TN QOLS, SAS, 
SDS, etc.) and TGNcV for determining the correlations 
between mean cortical thickness/volume, gyrification 
from the clusters derived from VBM or DBM or SBM, 
and clinical parameters. The statistical significance was 
defined as P < 0.05, and all tests were two-tailed.

Results
Demographic information and clinical characteristics
The demographic variables and clinical characteristics 
of the participants are summarized in Table  1. A total 
of 79 patients with CTN (54F, 25 M; 54.05 ± 10.56 years 
old) and sex- and gender-matched 81 HCs (56F, 27F; 
52.28 ± 8.56  years old) were included in this study. The 
inclusion process is shown in Fig. 1. All the patients with 
CTN had unilateral onset (52R, 27L), and the pain dis-
tribution was more in V2.3 (41/79). Most patients had 
severe pain intensity (VAS, 8.25 ± 1.77), and the average 
duration of attack was more than 2 min in 28 patients, 
and the peripheral or central sensitization may account 
for the continuous pain. Compared with HCs, patients 
with CTN had poorer quality of life and cognition and 
more severe depression and anxiety.

NVC degree and TGNcV
The ICC analysis showed that the TGNcV was in good 
agreement (ICC ≥ 0.75). All the patients displayed vary-
ing degrees of NVC on the side affected. The nerve dis-
tortion and/or displacement occurred in 5 patients and 
the significant indentation was found in 74 patients, 
which was caused by compression of the offending 
vessel.

Compared with the contralateral TGNcV, the ipsi-
lateral TGNcV in patients with CTN was significantly 
smaller (53.90 ± 25.75  mm3  vs 68.17 ± 30.13  mm3, 

https://pyradio.mics.readthedocs.io/en/latest/index.html
https://pyradio.mics.readthedocs.io/en/latest/index.html
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P = 0.002). Compared with the average TGNcV of the 
HCs, the nerves of the affected (115.47 ± 31.59  mm3  vs 
53.90 ± 25.75  mm3, P = 0.002) or unaffected side 
(115.47 ± 31.59  mm3  vs 68.17 ± 30.13  mm3, P = 0.002) 
were all atrophied. The CSA of the compression point 
was 11.18 ± 4.47  mm2 (Table 1 and Fig. 2).

VBM analysis between CTN and HCs
The GM atrophy in patients was compared with that in 
HCs in two clusters: Temporal_Pole_Sup_R (10.07%) 
and Precentral_R (12.28%) (Fig. 3), as detected by VBM. 
Table  2 lists the standard space coordinates, different 
brain regions, and voxels of these brain regions. A positive 

Table 1 Demographic and clinical characteristics of patients with CTN and healthy controls

CTN Classical trigeminal neuralgia, HCs Healthy controls; * the four dimensions of the quality-of-life score of patients with trigeminal neuralgia; R Right, L Left, MMSE 
Mini-mental state examination, VAS Visual analogue scale, CSA Cross-sectional area, TGNcV Volume of trigeminal nerve cisternal segment, ipsi ipsilateral, contra 
contralateral

CTN HCs P

Sex (women/men) 54/25 56/27 0.957

Age (year) 54.05 ± 10.56 52.28 ± 8.56 0.077

Lateral (R/L) 52/27 NA NA

Distribution V2.3 41 NA NA

V3 15

V2 13

V1.2 8

V1.2.3 1

V1 1

Average duration of attack < 2 min 51 NA NA

> 2 min 28

Attack frequency (per day) < 20 24 NA NA

20–50 15

50–100 8

> 100 32

Duration (year) 5.03 ± 4.94 NA NA

Pain intensity (VAS) 8.25 ± 1.77 NA NA

MMSE 26.94 ± 3.20 28.54 ± 1.82 0.000

Symptoms* 21.86 ± 4.36 6.00 ± 0.00 0.000

Physical  function* 19.14 ± 4.27 13.95 ± 2.36 0.000

Psychology* 13.00 ± 4.22 5.67 ± 1.26 0.000

Society* 14.29 ± 4.09 5.00 ± 0.00 0.000

Self-rating depression scale 37.38 ± 7.11 28.59 ± 5.17 0.000

Self-rating anxiety scale 33.10 ± 5.91 28.37 ± 5.35 0.000

CSA of compression point  (mm2) 11.18 ± 4.47 NA NA

TGNcV  (mm3) Ipsi (53.90 ± 25.75) Contra (68.17 ± 30.13) 0.002

Ipsi (53.90 ± 25.75) HCs (115.47 ± 31.59) 0.000

Contra (68.17 ± 30.13) HCs (115.47 ± 31.59) 0.000

Fig. 1 Selecion of patients with CTN and HCs. CTN, classical trigeminal neuralgia; HCs, healthy controls
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correlation was found between the GMV of Tempo-
ral_Pole_Sup R and disease duration (year) (P = 0.030, 
r = 0.245). A negative correlation was found between the 
GMV of Temporal_Pole_Sup_R and CSA of the com-
pression point (P = 0.048, r = –0.224) and symptoms of 
TN QOLS (P = 0.002, r = –0.336). A negative correlation 
was found between the GMV of precentral_R and ipsi-
lateral TGNcV (P = 0.013, r = –0.278), CSA (P = 0.041, 
r = –0.231), and VAS (P < 0.025, r = –0.252) (Fig. 4).

DBM analysis between CTN and HCs
The GM volume increased in patients compared with 
HCs in one cluster named Temporal_Pole_Sup_L 
(8.16%), as detected by DBM (Fig.  3). Table  2 lists the 
standard space coordinates, different brain regions, and 
voxels of these brain regions. A negative correlation was 
found between the GMV of Temporal_Pole_Sup_L and 
SAS (P = 0.005, r = –0.341) (Fig. 4).

SBM analysis between CTN and HCs
The SBM analysis across the whole brain found that the 
gyrification increased in the Middle Temporal_L (3.70%) 
and the thickness of the cortex decreased in Postcentral_L 
(4.92%) of patients with CTN compared with HCs (Fig. 5).

Discussion
This study involved a single-center, prospective assess-
ment of 79 patients with CTN. The results showed that 
the brain regions detected by VBM, DBM, and SBM were 
different and complemented each other. Among these, 
some brain regions were correlated with the clinical 
parameters, TGNcV, and CSA of the compression point.

The three methods (VBM, DBM, and SBM) analyzed 
the change in brain neuroanatomy [42]. Among these, 
DBM and VBM were the voxel-level analysis methods 
[34, 59], which were used to measure the GMV [42]. 
VBM provided voxel-wise volume estimations of seg-
mented GM, WM, and CSF [33, 37]. DBM relied on the 
deformation generated from the spatial registration to 
reflect the whole-brain structural changes [35, 60]. SBM 
analyzed the cortical morphological features based on 
vertex measurement and comparison of the cortical 
thickness [42]. These three brain structure analysis meth-
ods could extract different indicators, representing differ-
ent structural characteristics of the brain cortex.

In this study, the GMV of Temporal_Pole_Sup_L was 
found to be decreased using VBM and increased using 
DBM. The Temporal_Pole_Sup plays an important role in 
pain memory, and the pain memory plays a crucial role 
in the perception of future pain [61, 62], indicating that 

Fig. 2 The TGNcV  (mm3) between patients with CTN (ipsilateral and contralateral) and healthy controls. The ipsilateral TGNcV was significantly 
smaller compared with the contralateral TGNcV,and the bilateral TGNcVs were both significantly smaller compared with the average TGNcV of 
healthy controls. *Average volume of the healthy controls ((right + left)/2); CTN, classical trigeminal neuralgia; TGNcV, volume of trigeminal nerve 
cisternal segment

(See figure on next page.)
Fig. 3 VBM and DBM analysis of the GMV. (A) VBM analysis revealed significantly decreased GMV in two clusters in patients with CTN compared 
with healthy controls. GMV atrophy was observed in the Temporal_Pole_Sup_R and Precentral_R (GFR, voxels P < 0.001, clusters P < 0.05). (B) DBM 
analysis revealed significantly increased GMV cluster (Temporal_Pole_Sup_L) in patients with CTN compared with healthy controls (GFR, voxels 
P < 0.001, clusters P < 0.05). CTN, classical trigeminal neuralgia; VBM, voxel-based morphometry; DBM, deformation-based morphometry; GMV: gray 
matter volume; GRF: Gaussian random field
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Fig. 3 (See legend on previous page.)
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the Temporal_Pole_Sup might be related to pain mem-
ory in patients with CTN. The GMV and side of Tem-
poral_Pole_Sup were different between VBM and DBM 
due to two reasons. On the one hand, it might be some 
differences between the two methods. VBM converted 
images into standard space for information extraction, 
whereas the DBM method extracted information from 
deformation field. Therefore, it was seen that the two 
methods complemented each other. On the other hand, 
it might be the compensatory mechanism. CTN caused 
a decrease in the GMV of Temporal_Pole_Sup on the 
right side and an increase in the compensatory volume of 
Temporal_Pole_Sup on the left side. Pain is a subjective 
experience that can produce symptoms beyond the per-
ception of pain itself [63]. Therefore, the reason for this 
phenomenon may also be caused by other factors, which 
needs further study. Wang et al. [17] found that the GMV 
of bilateral Temporal_Pole_Sup decreased. Li et  al. [23] 

also found that the GMV of bilateral Temporal_Pole_Sup 
decreased and was negatively correlated with the course 
of disease. The previous studies on the GMV in patients 
with CTN mostly used VBM. Our study combined DBM 
and VBM to study the GMV in patients with CTN, which 
had a certain complementary effect on previous findings. 
The Temporal_Pole_Sup was also involved in emotion 
regulation and had neurocognitive functions [64]. The 
correlation analysis showed that the volume of Tempo-
ral_Pole_Sup_L decreased with the increase in anxiety. 
The CSA of the compression point and TN QOLS (symp-
toms dimension) decreased and the Temporal_Pole_
Sup_R volume increased with the increase in disease 
duration. This indicated that the disease duration, CSA 
of compression point, TN QOLS (symptoms dimension), 
and mood might affect the Temporal_Pole_Sup GMV of 
patients with CTN.

Table 2 Brain regions in which the GMV or cortex shape changed in patients compared with healthy controls, as detected using VBM, 
DBM, and SBM

GMV Gray matter volume, CTN Classical trigeminal neuralgia, MNI Montreal Neurological Institute, VBM Voxel-based morphometry, DBM Deformation-based 
morphometry, SBM Surface-based morphometry, TPOsup Temporal_Pole_Sup

Brain region Side Peak MNI coordinates Cluster size
(voxels)

Peak intensity

X Y Z

VBM TPOsup R 39 16.5 –18 787 –4.5498

Precentral R 48 –16.5 45 940 –4.5072

DBM TPOsup L –51 7.5 –3 762 4.6929

SBM

Gyrification Middle temporal gyrus L –39.5 –0.58 –52.1 1523 4.1882

Thickness Postcentral L –38.9 13.9 13.9 1802 –3.9562

Fig. 4 Correlations between the clinical parameters and brain regions in which the GMV changed in patients with CTN. (A) The GMV of TPOsup_L 
was negatively correlated with self-rating anxiety scale (P = 0.005, r = –0.341), (B) The GMV of TPOsup_R was positively correlated with disease 
duration (years) (P = 0.030, r = 0.245) and negatively correlated with the CSA of compression point (P = 0.048, r = –0.224) and symptoms of TN 
QOLS (P = 0.002, r = –0.336). (C) The GMV of precentral_R was negatively correlated with the ipsilatreal TGNcV (P = 0.013, r = –0.278), CSA of 
the compression point (P = 0.041, r = –0.231), and VAS (P < 0.025, r = –0.252). GMV, gray matter volume; CTN, classical trigeminal neuralgia; CSA, 
cross-sectional area; TN QOLS, quality-of-life score of patients with trigeminal neuralgia; TGNcV, volume of trigeminal nerve cisternal segment
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In this study, besides the decrease in the GMV of Tempo-
ral_Pole_Sup _R, we also found a decrease in the GMV of 
precentral_R using VBM. The precentral_R is located in the 
frontal lobe and is the main motor area of the cerebral cor-
tex. It is a key driver of motor output and associated with 
pain perception and regulation [12]. CTN is often triggered 
by harmless movements such as washing face and eating. 
Patients may limit the occurrence of such movements to 
avoid pain, which may lead to a change in precentral GMV. 
Thus, the precentral_R may reflect a sensory pain response 
caused by repeated CTN, motor inhibition of the maxilla, 
and facial muscle tone [65–67]. Tsai et al. [12] and Yan et al. 
[68] found that the GMV decreased in precentral_R. Wang 
et al. [20] found that the GMV decreased in multiple brain 
areas, including primary motor cortex and premotor area. 
The correlation analysis showed that the ipsilateral TGNcV 
and CSA of the compression point increased, and the pain 
degree of patients with CTN was more severe (VAS score 

was higher) with the decrease in the GMV of precentral_R. 
The indicated that the VAS score, ipsilateral TGNcV, 
and CSA of the compression point affected the GMV of 
precentral_R GMV.

In this study, we analyzed four parameters using SBM: 
sulcal depth, curvature, cortical thickness, and degree of 
gyrification. Among these, we found brain regions with 
different degree of gyrification and cortical thickness, 
while the remaining parameters displayed no changes. 
The middle temporal gyrus is the classic brain region of 
the default mode network. In this study, the gyrification of 
middle temporal_L increased. This was probably because 
the long-term pain stimulation led to a change in the 
morphology of the middle temporal gyrus (gyrification). 
Current studies on the brain structure of patients with TN 
only found a decrease in the GMV of the middle tempo-
ral gyrus. Li et al. [23] and Wang et al. [17] found that the 
GMV increased in the middle temporal gyrus, while Yan 

Fig. 5 A comparison of the cortical morphology of patients with CTN and healthy controls using SBM. (A) Gyrification: red clusters representing 
significantly more gyrification (left middle temporal gyrus) in patients with CTN (FWE, voxels P < 0.001, clusters P < 0.05). (B) Cortical thickness: 
blue clusters representing significantly thinner cortical regions (left postcentral) in patients with CTN (FWE, voxels P < 0.001, clusters P < 0.05). CTN, 
classical trigeminal neuralgia; SBM, surface-based morphometry; FWE, family-wise error
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et  al. [68] found that the GMV decreased in the middle 
temporal gyrus. No study showed a change in gyrification 
in the middle temporal gyrus, which might be caused by 
individual differences and different processing methods. 
The postcentral is the primary somatosensory cortex, 
which receives most somatosensory information from 
the thalamus and is involved in the anticipation, intensity, 
discrimination, spatial and temporal summation of pain 
processing, and pain coding [69]. In our study, we found 
a decrease in the cortical thickness of Postcentra_L. Des-
ouza et al. [32] and Obermann et al. [21] found that the 
thickness of the left primary sensory cortex increased in 
patients with TN compared with HCs.

The ultrastructural features of neurons and other cells 
in the cortex may contribute to the morphological charac-
teristics that are observed at a macroscopic level [70–72]. 
The cortical morphology characteristics, including GMV, 
cortical thickness, gyrification index, and sulcal depth 
have been indicated to reflect the regulation of interme-
diate progenitor cells’ genesis and amplification [30, 70]. 
The gray matter density, cortical area, channel pattern and 
cortical thickness affected the size of GMV [71]. Various 
cellular-level features including density, size, arrangement 
of neurons, nerve fibers, and neuroglia affected the corti-
cal thickness [72]. Cortical gyrification adapts the cortical 
surface area to the skull, which promotes the development 
of neural circuits [73]. However, the exact relationship 
between ultrastructure and cortical morphological charac-
teristics remains an active area of investigation, and more 
research is needed to fully understand this relationship. 

Conclusions
In this study, we analyzed the brain structure of patients 
with CTN by combining VBM, DBM, and SBM. We 
found that some brain regions in these patients cor-
related with clinical parameters, TGNcV, and CSA of 
the compression point. However, no overlapping brain 
regions were found among the three methods. This might 
be because the processing procedures of the three meth-
ods were different, which also indicated that the three 
methods complemented each other. The analysis of CTN 
using the combination of the three methods could pro-
vide additional information and a basis for further inves-
tigation of the pathophysiology of CTN.

Limitations
In this study, the features of the recruited patients, for 
example, disease duration, pain distribution, pain inten-
sity and so on, were not consistent. However, we could 
not perform a subgroup analysis due to sample size 
limitations. The sample size should be further expanded 
for stratified group research in the future. The other 

limitation was that our study was a cross-sectional study 
and the longitudinal data were not included, although 
this was a general characteristic of most studies. Further 
studies should be combined with the longitudinal data 
to further clarify the pathophysiological mechanism of 
CTN.
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