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Abstract
Different pathological conditions that begin with slow and progressive deformations, cause irreversible affliction by producing 
loss of neurons and synapses. Commonly it is referred to as ‘protein misfolding’ diseases or proteinopathies and comprises 
the latest definition of neurological disorders (ND). Protein misfolding dynamics, proteasomal dysfunction, aggregation, 
defective degradation, oxidative stress, free radical formation, mitochondrial dysfunctions, impaired bioenergetics, DNA 
damage, neuronal Golgi apparatus fragmentation, axonal transport disruption, Neurotrophins (NTFs) dysfunction, neuroin-
flammatory or neuroimmune processes, and neurohumoral changes are the several mechanisms that embark the pathogenesis 
of ND. Capsaicin (8-Methyl-N-vanillyl-6-nonenamide) one of the major phenolic components in chili peppers (Capsicum) 
distinctively triggers the unmyelinated C-fiber and acts on Transient Receptor Potential Vanilloid-1, which is a  Ca2+ perme-
able, non-selective cation channel. Several studies have shown the neuroprotective role of capsaicin against oxidative damage, 
behavioral impairment, with 6-hydroxydopamine (6-OHDA) induced Parkinson's disease, pentylenetetrazol-induced 
seizures, global cerebral ischemia, and streptozotocin-induced Alzheimer’s disease. Based on these lines of evidence, 
capsaicin can be considered as a potential constituent to develop suitable neuro-pharmacotherapeutics for the management 
and treatment of ND. Furthermore, exploring newer horizons and carrying out proper clinical trials would help to bring out 
the promising effects of capsaicin to be recommended as a neuroprotectant.

Keywords Neurological disorder · Capsaicin · Neuroprotection · Excitotoxicity · Neurochemicals · Neuronal dysfunction/
death · Oxidative stress

Introduction

Neurological disorders (ND) are defined as a combination of 
pathological conditions which precede slow and progressive 
deformations and induce irreversible dysfunction along with 
loss of neurons and synapses in certain areas of the nervous 
system. Even though the basic molecular mechanism of ND 
remains unclear, a combination of several factors including 
endogenous, genetic, and environmental elements related 
to aging, contribute to the generation of the disease [1, 2]. 
Currently, ND are classified based on genetic mechanisms 
and the nature of the compound that is found in the protein 
deposits. Accumulation of mitochondrial DNA mutations 
may provoke reactive oxygen species (ROS) production 

and cause oxidative injury in aged tissues [1]. Age-related 
ROS production and decreased levels of adenosine triphos-
phate (ATP) might be responsible for Amyloid beta (Aβ) 
peptides production. The Aβ peptides enter the mitochon-
dria, prompt free radicals, decline cytochrome oxidase activ-
ity, and finally inhibit the generation of ATP molecules in 
Alzheimer’s disease (AD) patients. In AD brains, amyloid 
precursor protein (APP) is transported to the outer mitochon-
drial membranes, which initiates the transport of nuclear 
cytochrome oxidase proteins to mitochondria and may con-
tribute to reduced cytochrome oxidase activity in the AD 
brain. Aβ is present in the mitochondrial matrix and binds 
to Aβ-binding alcohol dehydrogenase in the neurons of AD 
patients, produces reactive oxygen species (ROS), and leads 
to mitochondrial dysfunction. The N-terminal portion of 
ApoE4 is associated with mitochondria, produces free radi-
cals, and causes oxidative injury. Gamma secretase complex 
proteins (presenilins, anterior pharynx-defective, and nica-
strin) were present in the mitochondria and may contribute 
to the production of Aβ and the generation of free radicals. 
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Mutant proteins of a-synuclein, Parkin, PINK1, and DJ1 are 
related to mitochondria and cause mitochondrial dysfunc-
tion, and the Complex-I activity is inhibited in Parkinson’s 
disease (PD).

Due to conformational changes in proteins, these disor-
ders are generally referred to as ‘protein misfolding’ diseases 
or proteinopathies [2–4]. Various studies have explored the 
function of molecular chaperones in neurological disorders 
which are characterized by the aggregated protein accumu-
lation in AD [5–7], PD [8, 9], Familial Amyotrophic lateral 
sclerosis (FALS) [10–13], and related poly-Q expansion 
diseases [14–17].

Usually, the classification of neurological disorders is 
based upon their major clinical features, lesion topography, 
or a blend of both. Therefore, ND are grouped into diseases 
of the basal ganglia, brain stem, cerebral cortex, cerebellum, 
and spinal cord, which are further categorized according 
to their main clinical aspects (Fig. 1). The disease, which 
mainly influences the cerebral cortex, may be partitioned 
into dementia (e.g., AD) and non-dementia. The impact on 
basal ganglia is significantly defined by abnormal move-
ments and hence is categorized as the hypokinetic or hyper-
kinetic condition. PD comes under the hypokinetic basal 
ganglia disorders; depending on the amplitude and velocity 
falloff of voluntary movements, the person becomes com-
pletely immovable. Whereas hyperkinetic basal ganglia 
disorders, which are described by Huntington’s disease 

(HD) and critical tremors. Diseases that affect the cerebel-
lum can be categorized as dentatorubral degeneration, in 
which the most particular lesions appear in the dentate and 
red nuclei. Degeneration mostly alters the lower and upper 
motor neurons, the substantia nigra, and the dentate system 
in the Machado-Joseph disease. When the disease affects the 
spinal cord, it shows either as ALS or spinal muscular atro-
phy, in which the most severe lesions occur in the (anterior 
part) spinal cord, and in Friedreich ataxia, lesions are found 
in the (posterior part) spinal cord [18].

The common pathogenic mechanisms responsible for ND 
involve protein misfolding dynamics, proteasomal dysfunc-
tion, aggregation, faulty degradation, oxidative stress, ROS 
formation, mitochondrial dysfunctions, weakened bioener-
getics, DNA injury, neuronal Golgi apparatus fragmenta-
tion, cellular or axonal transport commotion, neurofibril-
lary tangles (NTFs) dysfunction, neuroinflammatory or 
neuroimmune processes, and neurohumoral changes [19]. 
A summary of the mechanisms of the neurological disorder 
is depicted in Fig. 2. These mechanisms are interconnected 
in complex vicious circles which eventually lead to neuronal 
cell dysfunction and death [19].

Age is one of the most consonant risk factors that con-
tribute to a significant role in the progression of ND, mainly 
in AD or PD [20]. It generally occurs in elderly people as 
they show mild cognitive or motor alterations and hence 
this proves that aging can be deemed as a ‘benign’ form of 

Fig. 1  Neurological disorders 
and the region affected in brain
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neurodegeneration. Several studies have reported that thou-
sands of neurons are lost per day, which accounts for the 
cognitive fall-off and the brain size deduction which is linked 
with normal aging [1, 21–23]. At the same time, certain 
studies were reviewed by Morrison and Hof [23], and indi-
cated that the declination in the number of neurons due to 
neuronal death is not particularly related to normal aging in 
several species including humans because other factors viz. 
protein misfolding dynamics, DNA injury, oxidative stress, 
neuroinflammatory processes and neurohumoral changes are 
also involved in neuronal loss [19]. This is mainly evident in 
the neocortex area and hippocampal subregions (entorhinal 
cortex and CA1) that are related to memory [23]. Other hall-
marks that may be found in the brains of symptomatic indi-
viduals include the presence of Lewy bodies, senile plaques, 
and NFTs instead of the gradual neuronal loss [24, 25].

Conventionally, a variety of plants have been used for the 
cure of cognitive disorders as the phytochemicals present 
in these plants play a key role in keeping the major inhibi-
tory neurotransmitters level by modifying their effect on the 
receptors. The phytoconstituents that exhibit a neuroprotec-
tive role and hence prove to be beneficial in neuropsychiatric 
and neurological disorders include fatty acids, flavonoids, 
phenols, saponins, and terpenes [26].

Capsaicin (8-Methyl-N-vanillyl-6-nonenamide) is one of 
the key phenolic components present in chili peppers (Capsi-
cum) and is responsible for its spicy flavor. The traditional uses 
of capsaicin from various literature reviews include anti-bacte-
rial [27, 28], anti-cancer [29, 30], anti-diabetic [31, 32], anti-
fungal [33, 34], anti-hypertensive [35, 36], anti-inflammatory 

[37–39], antioxidant [40, 41], analgesic, and anti-obesity activ-
ities [42–45]. Furthermore, it can also be utilized as a treat-
ment for cardiovascular ailments [46, 47], hepatic disorders 
[48, 49], and angiogenic activity [50]. A brief overview of the 
pharmacology of capsaicin and a summary of the important 
features and properties of capsaicin are summarized in Table 1. 
It can trigger unmyelinated C-fibre and therefore is used in the 
treatment of pain [51]. The multivariate functions of capsai-
cin include regulation of energy intake and improvement in 
energy expenditure, enhancement in the secretion of insulin, 
lessening of blood pressure, and alleviation in lipid storage and 
atherosclerotic lesions. Additionally, various reports suggest 
the anti-tumorigenic and anti-inflammatory activity of cap-
saicin in the allergic airway and improvement of the signs of 
the neurogenic bladder [52].

Indeed, capsaicin and a few capsaicin analogs have been 
presented in clinical research covered by several patents. 
Moreover, emerging data indicate its clinical significance in 
various clinical trials with human doses. Some of the clinical 
trials are summarized in Table 2.

The following equations can be used for the conversion of 
animal dose to human dose for determining the amount of drug 
reaching the brain when humans consume chili peppers [67]. 
Because no studies are currently available that have applied 
these equations to the chili pepper case, we are planning for 
this purpose.

HED (mg/kg) = Animal dose (mg/kg) ×
(

Animal K
m
∕Human K

m

)

Fig. 2  Mechanism of neurological disorder and associated biomarkers
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 where: HED—Human Equivalent dose,  Km—Correction 
factor (ratio of average body weight of species in kg to its 
body surface area in  m2).

As the  Km factor for each species is constant, the  Km ratio 
is used to simplify calculations. Hence, equation is modi-
fied as:

HED (mg/kg) = Animal dose (mg/kg) × K
m ratio

Like the HED estimation, the animal equivalent dose 
(AED) can also be calculated on the basis of body surface 
area by either dividing or multiplying the human dose (mg/
kg) by the  Km ratio is calculated by minor modification of 
Eq. 3 as:

AED (mg/kg) = Human dose (mg/kg) × K
m ratio

Although research developments in neuroscience, ethnop-
harmacology, and herbal medicine have greatly advanced our 
understanding of the roles of potential medicinal plants and 
their active constituents, there is still debate in neuropharma-
cology, molecular targets, and their modulation by 
phytocon-stituents. Therefore, the present review describes 
the protec-tive role of capsaicin in ND and future directions 
of research to develop evidence-based neuro-
pharmacotherapeutics.

Potentials of Capsaicin in Alzheimer’s 
Disease

AD is the highly widespread source of age-related demen-
tia, which creates an intense social and economic burden. 
Currently, there is no efficient approach available for the 
treatment of AD or even to terminate disease progression 
[68, 69]. Clinically, it is characterized by a gradual and 
steady decline in cognitive function and pathologically it 
is described by the presence of deposits of Aβ microtubule 
tau-binding protein [70]. Previous studies have indicated 

1 3

that AD is related to angiogenesis [50]. Neuro-inflamma-
tion is one of the pathological characteristics of AD which 
is associated with overexpression of cytokines (IL-1β) that 
can be responsible for the induction of angiogenesis [71]. 
Vascular endothelial growth factor (VEGF), a strong angio-
genic growth factor, is also stimulated by these cytokines 
and overexpressed in patients with AD [72, 73]. A previous 
report [74] supported the evidence that capsaicin has a vig-
orous anti-angiogenic effect (in-vitro and in-vivo). Capsaicin 
restricts the VEGF effect on the proliferation of the endothe-
lial cell, migration, and capillary-like tube creation [74].

Streptozotocin-induced AD, one of the most prominent 
models, was used to determine the effect of capsaicin on 
the reduction of cognitive impairment. Thirty male albino 
rats were used in where ten rats were treated with saline via 
i.c.v and intragastric routes in a single group for forty-seven 
days. The disease was induced in them by a single dose of 
STZ (3 mg/kg, i.c.v.) in the left hind paw of rats. A passive 
avoidance test was performed to evaluate the progression of 
the disease which was conducted post 2 weeks of administra-
tion of the drug. After noticing the retention latency of fewer 
than 300 secs, rats were further divided into two groups, one 
with (intragastric infusion) capsaicin at a dose of 10 mg/
kg whereas normal saline was injected in the second group 
serving the positive control. On a molecular level, Aβ1-42 
tau protein levels were measured by using ELISA. The study 
(behavioral and biochemical parameters) showed a positive 
effect of capsaicin compared to normal control. It is noticed 
that there was a suppression of angiogenesis in the chick 
embryo after the administration of capsaicin. Therefore, it 
was demonstrated that capsaicin can enhance the behavioral 
and biochemical changes in STZ-induced AD [75]. 

Stress has been a well-known risk factor for AD, which 
could hasten deposition of Aβ, synaptic damage, and cog-
nitive shortfalls in several AD paradigms [76, 77]. There 
is evidence that showed that capsaicin can mitigate stress-
induced shortfalls in synaptic plasticity (in-vitro) [78].

Table 1  Brief overview of pharmacology of capsaicin and summary of the important features and properties of capsaicin

Feature and properties of capsaicin References

Route of administration 
and half-life

Topical (24 h), Oral (25 min.) [53, 54]

Distribution 24.4% (liver, kidney, and intestine) [55]
Metabolism 16-hydroxycapsaicin, 17-hydroxycapsaicin, and 16,17-Dihydrocapsaicin (Liver)

Vanillylamine and vanillyl acid (Skin)
[56]

Elimination Eliminated by the kidneys with a small untransformed proportion excreted in the feces and urine [56, 57]
Mechanism of action Capsaicin acts on transient receptor potential vanilloid 1 (TRPV1) which is a non-selective, ligand-

operated cationic channel permeable to sodium and calcium ions and located in the small fibers of 
nociceptive neurons

[58–63]

Clinical applications Analgesic response
Protection against ethanol and indomethacin-induced gastropathy
Positive response on cognitive function

[64–66]
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Furthermore, a study revealed that by promoting the 
amy-loidogenic route, capsaicin could interfere with APP 
metab-olism in the brain [79]. However, the mechanism 
of neu-roprotection of capsaicin in neurodegeneration 
caused by stress is not completely understood. In this 
study, capsaicin substantially ameliorated cold water 
stress (CWS)-induced synaptic injury and tau 
hyperphosphorylation, which is the well-known 
histopathological characteristic of AD.

The study was conducted to determine the potential 
of capsaicin to alleviate cognitive and pathological 
alterations in rats that were exposed to CWS. The animals 
were divided into two groups (normal and treatment) where 
capsaicin was given (10 mg/kg) by intragastric infusion 
an hour before the stress. It was concluded that 
administration of capsaicin decreased spatial memory loss 
and simultaneously subdued the PP-DG long-term 
potentiation. The regression induced by stress in 
dendritic areas was diminished and memory-associated 
proteins (synapsin I and PSD93) were also found to be 
lifted. Capsaicin also hampered CWS-induced tau 
hyperphosphorylation by terminating the inhibition of pro-
tein phosphatase 2A. Therefore, the study demonstrated 
its effect by activating the TRPV1 receptor, which could 
dimin-ish the CWS-induced Alzheimer’s-like 
neuropathological changes and cognitive damage, making 
TRPV1 an efficient target in AD treatment [80].

Evidence suggested that capsaicin had its effects on 
obe-sity and enhanced glucose homeostasis in type 2 
diabetes. Capsaicin plays a key role in the improvement 
of glucose homeostasis and insulin sensitivity. It 
diminished body-weight, averted inflammation of 
adipose tissue and liver, enhanced fatty acid oxidation 
in high-fat diet-fed obese mice [81], and enhanced 
visceral fat remodeling [82]. It accelerated GLP-1 
secretion [83], and TRPV1, which is expressed in islet β 
cells could modify insulin secretion via an enhanced  Ca2

+ influx mechanism [84]. Brain insulin signaling 
impairment has been involved in the development of AD 
[85, 86]. Restoring brain insulin signaling is a novel 
approach for the treatment of AD [86]. As the study 
showed that the inadequacy brain-damaged insulin 
signaling path-way was found in type 2 diabetic rat brain, 
which is synony-mous with previous evidence that 
indicated damaged brain insulin signaling pathway in type 
2 diabetes individuals [87, 88]. Involvement of proteins in 
the insulin signaling pathway was up-regulated in 
capsaicin treated diabetic type 2 rats as compared to Type 
2 Diabetic rats, which is also reliable with a study that 
showed that red peppers extract administration facilitated 
to restore of insulin signaling pathway and pre-vented tau 
hyperphosphorylation and Aβ accumulation in Type 2 
diabetic rat model united with Aβ induced dementia [89]. 
Other studies have indicated that  Ca2+ influx elicited 
PI3K/AKT signaling pathway in numerous tissues [90–
92].

Xu et al. [93] explored the role of dietary capsaicin on 
Alzheimer’s disease in type 2 diabetic rats. The rats 

were 

provided with a capsaicin-containing high-fat (HF) diet for 
10 consecutive days. To observe the effects of narrowed food 
intake and the resultant decrease in body weight, type 2 dia-
betic rats were administered with an HF diet of an average 
dose of capsaicin. Another group consisted of non-diabetic 
rats that were given a standard chow diet. Blood glucose and 
insulin levels were kept under check apart from the phospho-
rylation level of tau at individual sites, glycogen synthase 
kinase-3β (GSK-3β), and phosphatidylinositol 3 kinase/pro-
tein kinase B (PI3K/AKT) activities analyzed by Western 
blotting. It was seen that the levels of phosphorylated pro-
teins at specific sites of Ser199, Ser202, and Ser396 in the 
hippocampus of type 2 diabetic rats that were administered 
with capsaicin had a decline compared to the pair-fed dia-
betic rats. Similarly, non-diabetic rats with a capsaicin diet 
showed insignificant changes compared to non-diabetic rats 
with a normal chow diet. Thus, it was concluded that cap-
saicin can alleviate the hyperphosphorylation of tau proteins 
associated with Alzheimer’s disease as capsaicin increased 
the activity of PI3K/AKT and at the same time inhibited 
GSK-3β in the hippocampus of diabetic rats. This supported 
the protective role of capsaicin in Alzheimer’s disease in 
diabetic patients (Fig. 3).

Previous studies have found that curcumin can inhibit the 
formation of Aβ oligomers and fibrils, thereby suppressing 
new amyloid accumulation and removing deposited amyloid 
[94, 95]. Curcumin and capsaicin have comparable struc-
tures and physiological effects [96]. Therefore, there may 
have been certain chances that capsaicin produces similar 
effects on amyloid, and these findings suggested that a cap-
saicin-rich diet may lower the chances of dementia occur-
rence and enhance cognitive function.

On this basis, a clinical study was conducted to explore 
the correlation between capsaicin consumption, cognition, 
and blood markers associated with AD. The study was 
conducted with a total of 338 volunteers of age group 40 
and above from various communities. Using the Food Fre-
quency Questionnaire (FFQ), a detailed survey of dietary 
habits about chili consumption was gathered. Relatively, by 
using the Chinese model of Mini-Mental State Examina-
tion (MMSE) cognitive function was evaluated and blood 
amyloid levels were measured with ELISA kits. The results 
achieved (univariate and multivariate analysis) based on age, 
educational level, alcohol consumption, gender, body mass 
index (BMI) and comorbidities showed a positive connec-
tion of capsaicin diet with MMSE scores and serum 
levels. Therefore, the study concluded that diet-rich 
capsaicin can have a positive effect on blood biomarkers 
and cognitive function related to AD in middle-aged 
and elderly adults [97].

Aβ Overproduction plays a crucial role in AD pathogen-
esis [98, 99]. Subsequent cleavage of APP through β and γ 
secretases is responsible for the generation of Aβ. On the 
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other hand, APP can be ripped by α-secretase, which is 
present in the Aβ domain, which obstructs Aβ generation. 
Elevated activity of α-secretase competitively diminishes 
β-secretase processing of the production of APP and Aβ 
[100]. The major α-secretase (ADAM10) is responsible for 
the ectodomain shedding of APP in the brain [101, 102].

Similarly, the effect of dietary capsaicin on cognition 
and serum Aβ levels in 40 years and overage persons was 
explored in APP/PS1 mice. Lines of evidence supported 
the role of capsaicin in Alzheimer’s disease as they relo-
cated the processing of Amyloid precursor protein (APP) 
to the α-cleavage side and prohibited the production of Aβ 
by augmenting the disintegrin and metalloproteinase 10 
(ADAM10) maturation. Similarly, other Alzheimer-type 
pathologies including tau hyperphosphorylation, neuroin-
flammation, and neurodegeneration were also averted by 
capsaicin. Therefore, the current study demonstrated that 
capsaicin could act as a potential therapeutic candidate for 
Alzheimer's and needs further clinical trials on capsaicin to 
validate its efficiency as dietary supplements for the preven-
tion and treatment of Alzheimer's disease [103].

Irrespective of the positive studies, an open cohort study 
was conducted by Shi et al. [104]. They tried to explore 

the association between chili intake and cognitive function 
in Chinese adults and reported a negative effect of chili on 
cognitive function. Home visits were conducted to assess a 
3-day food record and the survey went on for 15 years. Using
multivariate mixed linear regression and logistic regression,
it was found that chili intake was associated with a decline in
cognitive function. Including all the sociodemographic and
lifestyle factors, they described self-reports of poor memory
and memory decline by people with a cumulative average
chili intake of more than 50 g/day [104].

Potentials of Capsaicin in Parkinson’s 
Disease

Parkinson's disease is defined as a progressive neurodegen-
erative disorder which is exemplified by the loss of dopa-
minergic neurons in the substantia nigra (SN) pars compacta 
[105]. The major objective of researching this field is to 
uncover potential disease-modifying drugs which help slow 
or stop the underlying neurodegenerative progression [106]. 
As there are no useful neuroprotective medications or rem-
edies have been discovered [107]. The possible mechanisms 

Fig. 3  Converging pathways leading to neuronal cell death in different ND through TRPV1-mediated pathways. TRPV1 activation by Capsaicin 
leads to modulation of biomarkers associated with neurodegeneration and beneficial effects for various neurological disorders
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involve neuroinflammation, protein aggregation, endo-
plasmic reticulum (ER) stress, mitochondrial dysfunction, 
and oxidative stress [108]. Earlier studies have shown that 
TRPV1 (capsaicin receptor), might be a therapeutic aim to 
improve levodopa-induced dyskinesia in an animal model of 
Parkinsonism [109, 110].

The study was conducted to examine the possible neuro-
protective role of capsaicin in the 6-OHDA-induced Parkin-
son's disease paradigm in rats. The locomotor and unusual 
involuntary activities were found to be alleviated when cap-
saicin was administered intraperitoneally. Likewise, oxida-
tive parameters such as superoxide dismutase and catalase 
were reduced in the brain. Western blot analysis of tyrosine 
hydroxylase and TRPV1 in the substantia nigra showed an 
improvement in the levels after the administration of cap-
saicin. Immunohistochemical analysis of substantia nigra 
further proved the potential of capsaicin against injury to 
dopaminergic neurons. Thus, it was observed that TRPV1 
could be considered as a potential target for Parkinson's dis-
ease [111].

Increasing evidence has proven microglial activation and 
IL-1β upregulation in SN in PD patients [112] and LPS-
lesioned SN. Other findings showed that administration of 
capsaicin tempered  MPP+-induced activation of microglia 
in the SN (in-vivo) and reduced the kainic acid-induced 
rise in IL-1β in the hippocampus of the rat [113], which 
consequently protected the neurons during the insult [114]. 
Various studies have shown that microglia/macrophages 
activation [115, 116], peripheral T lymphocytes [115], 
and neutrophils emigration [117] into the brain is related 
to the dopamine neurons death in the SN. Permeability of 
the Blood–Brain Barrier (BBB) was increased and blood 
vessel alterations were noted in the basal ganglia of PD indi-
viduals [118] and play a key role in the death of dopaminer-
gic neurons in lipopolysaccharide (LPS) treated PD rodent 
models [119].

LPS-induced inflammatory model was used to determine 
the role of capsaicin in alleviating the detrimental effects 
of Parkinson’s disease. Either of the capsaicin or TRPV1 
antagonist (capsazepine) group was administered with LPS 
unilaterally into the SN. Subsequently, immunohistochem-
istry, BBB-permeability estimation, western blotting, and 
free radical levels were detected in the isolated tissues. It 
was observed that the levels of proinflammatory cytokines 
were leveled back to normal and there was a consistent con-
version of pro-inflammatory mediators to anti-inflammatory 
ones. This was clear from the low expression levels of iNOS 
and IL-6 which are markers of the proinflammatory M1 
population, whereas markers of the anti-inflammatory M2 
population including arginase1 and CD206 were found 
to be higher. The oxidative stress-induced in the tissue 
due to LPS was lessened as the levels of free radicals 
especially peroxynitrite were low in the capsaicin-treated 
tissues. The 

beneficial effects of capsaicin in Parkinson’s disease were 
further confirmed by the capsazepine (TRPV1 antagonist) 
which blocked the receptor. Hence, the role of TRPV1 in 
treating neurodegenerative diseases was concluded and it 
was suggested that capsaicin through its role on the M1/M2 
population in the dopaminergic neurons help in the manage-
ment of the disease by acting on the TRPV1 receptor [120]. 
Additionally, the study revealed that capsaicin plays a 
significant role in regulating neurotransmitter release from 
nigral slices [121] which produces hypokinesia with a reduc-
tion in the nigrostriatal dopaminergic neurons activity, [122, 
123] and alters the effects of high-level of L-DOPA on motor 
action in reserpine treated Parkinsonism in rats, [124] imply-
ing that TRPV1 has a useful role in nigrostriatal dopamin-
ergic neurons.

During inflammation, by producing NADPH oxidase-
derived reactive oxygen species, reactive microglia can 
be responsible for the degeneration of dopaminergic neurons 
in the SN [125, 126]. Many experimental data have shown 
the presence of reactive microglia and enhanced ROS gen-
eration through stimulated NADPH oxidase deriving from 
reactive microglia in the SN of PD individuals [127, 128] 
and the SN of the MPTP model of mice [129–131].

The role of capsaicin in Parkinson’s disease was evaluated 
through another model of MPTP through various studies 
[121–124]. They proved that capsaicin has the potential to 
reduce damage to the dopaminergic neurons in the striata 
and showed improved recovery in the behavioral deficits 
induced by MPTP. Reduction in TNF-α and IL-1β level, free 
radicals produced from activated microglia-derived NADPH 
oxidase conferred the neuroprotective role of capsaicin. This 
was further explored using drugs like capsazepine and iodor-
esiniferatoxin which are TRPV1 antagonists and hence the 
role of the TRPV1 receptor in neurodegenerative diseases 
was confirmed. The possible mechanism of action includes 
the alleviation of activated glial mediated oxidative stress 
and neuroinflammation which pave the way for the develop-
ment of capsaicin and its analogs for the treatment of dis-
eases including Parkinson’s disease that is based on these 
mechanisms [132].

Another study [133] was conducted to investigate Capsi-
cum annuum L extract effect to hinder the neuronal degen-
eration in rotenone-induced noxiousness in mice. Rotenone 
(1.5 mg/kg, s.c.) was administered to mice 3 times per week 
for 2 consecutive weeks. From the very first day of rote-
none administration, mice also received a dose of Capsicum 
extract (56 or 224 mg/kg, i.p). After the administration of 
rotenone, a considerable increment was found in brain and 
liver MDA and nitric oxide levels, respectively. Reduced glu-
tathione and PON1 activity diminished in both the brain and 
liver, respectively. The cholinesterase activity was hampered 
in the brain, while 5-lipoxygenase was found to be improved. 
Administration of Capsicum inhibited the increase in MDA 
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and nitric oxide levels in the brain tissue. It also restored 
GSH, PON-1 activity and reduced the upsurge in 5-lipoxyge-
nase activity. Cholinesterase activity was restored to control 
value by the elevated dose of Capsicum. In the liver tissue, 
a significant decline was found in MDA, nitric oxide level, 
increased GSH level after the administration of capsicum 
extract. It also enhanced PON 1 activity. The neurotoxicity 
induced after the administration of rotenone was barred by 
Capsicum extract treatment which prevented the neuronal 
deterioration and reinstated GFAP positive cells. These find-
ings suggested that Capsicum exerted a potential neuropro-
tective effect in rotenone-induced toxicity in mice models of 
Parkinson’s disease [133].

The previous studies on the PD paradigm of flies con-
firmed that the flavonoid exposure shields the dopaminergic 
neuronal cell [134], and the other evidence suggested that 
the study with geraniol (natural plant products) on mice are 
sufficiently effective in shielding the dopaminergic neuronal 
cell and thereby outcomes in sustaining the apt dopamine 
levels [135]. The previous study with geraniol indicated 
that it does not vary α-synuclein expression and Lewy bod-
ies formation, and that its antioxidant activity is liable for 
impeding the PD symptoms in the PD paradigm of flies 
[136], which led to the conclusion that capsaicin is having 
sufficient potency for the recovery of the weakened functions 
of PD flies.

A study [137] was conducted to investigate the effect of 
capsaicin on the Parkinson paradigm of flies that express 
alpha-synuclein. The capability of capsaicin to eradicate free 
radicals at doses (20, 40, 80, and 100 μM) was revealed in 
the study which lasted for 24 days. The flies were subjected 
to the diet for 24 days, after that the head homogenate was 
prepared from individual groups and utilized for the assess-
ment of dopamine levels, lipid peroxidation, glutathione, 
Glutathione-S-transferase protein carbonyl content, and 
monoamine oxidase. The findings demonstrated that cap-
saicin at respective doses showed a vivid enhancement in the 
scavenging potential with a significant elevation in GSH and 
dopamine levels but at the same time reduced LPO, GST, 
and MAO activities when compared to the normal flies. 
Hence, it was concluded that capsaicin showed a protective 
part in relieving the symptoms of PD [137].

Potentials of Capsaicin in Seizures/Epilepsy

Epilepsy is a widespread neurological disorder that affects 
more than fifty million people all around the World [138]. It 
generally occurs due to the sudden and frequent occurrence 
of extreme and/or synchronous discharges in neurons present 
in the cerebral cortex. Possible pathogenetic mechanisms 
involve oxidative brain damage that causes hyperexcitabil-
ity and ultimately leads to neurodegeneration [139–141]. 

By previous findings, the antiepileptic property of capsaicin 
was reported [114, 142] and the role of capsaicin was also 
found in the reduction of the number and amplitude of 
action potentials in pyramidal neurons from the 
somatosensory cortex, and the overflowing behavior 
induced by gabazine (GABA-A antagonist) in vitro 
through TRP-independent pathways [143].

To evaluate the neuroprotective role of capsaicin on epi-
lepsy, neuronal damage, and oxidative insult, a study was 
conducted in which pentylenetetrazol (PTZ) induced status 
epilepticus [114, 142]. The administration of capsaicin to the 
rat (1 or 2 mg/kg, i.p.) thirty minutes before the first PTZ 
injection. Other groups were administered with vehicle or 
phenytoin (30 mg/kg, i.p.) alone or co-treated with capsaicin 
(2 mg/kg, i.p.). The study showed that after treatment with 
capsaicin, phenytoin, or capsaicin/phenytoin, MDA 
level was found to be reduced and GSH and PON-1 
activity was found to be improved. Nitric oxide was 
reduced by capsaicin or capsaicin/phenytoin. The mean 
total seizure score was diminished by capsaicin only as 
contrasted with the admin-istration of phenytoin and 
capsaicin/ phenytoin co-treatment. The latency and 
threshold doses of PTZ were found to be improved after 
the administration of phenytoin. Capsaicin did not 
diminish the anticonvulsive effect of phenytoin but 
prevented the phenytoin-induced rise in latency time 
and threshold dose. Neuronal damage was diminished by 
pheny-toin or capsaicin (2 mg/kg, i.p.), but nearly 
completely pro-hibited after the co-administration of 
capsaicin/phenytoin. Thus, this study concluded, 
capsaicin reduced brain oxida-tive stress, seizures 
severity, and neuronal injury, as well as its co-treatment 
with phenytoin gave neuronal protection in the status 
epilepticus model.

Glutamate receptors over activation is a key risk 
factor for excitotoxicity that leads to neuronal cell death 
[144]. The mechanism responsible for which Kainic Acid-
induced seizures cause neuronal injury is Glutamate 
receptor overac-tivation, which triggers extreme Ca influx 
into the neuronal cell and finally leads to neuronal cell 
death [145]. Contrast-ingly, capsaicin has a potent vanilloid 
receptor 1 (VR1) ago-nist, which is a non-selective ion 
channel [146]. Another study reported that some 
exogenous compounds (capsaicin) can rapidly desensitize 
the VR1 receptor and yield a neuro-protective action by 
diminishing the intracellular  Ca+ influx by blocking VR1 
activation.

Kainic acid-induced status epilepticus model was used to 
investigate the anti-epileptic effect of capsaicin [114]. 
Male ICR mice were used in the study, which were given 
kainic acid at a dose of 30 mg/kg intraperitoneal before 
the sub-cutaneous administration of capsaicin (0.33 mg/kg 
or 1 mg/kg). Three days after the administration of kainic 
acid, ani-mals were observed for anti-ictogenic, 
hypothermic, antioxi-dative, anti-apoptotic, and anti-
inflammatory effects of cap-saicin. The detrimental effects 
of kainic acid on rodents were 
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alleviated by capsaicin. In contrast to the kainic acid-treated 
group, lowered seizure activity and body temperature for 
three hours were found in the co-treated group, whereas in 
the parietal cortex intense and high-frequency seizures were 
also found to be diminished. The reduced levels of malon-
dialdehyde and enhanced antioxidant levels in the blood 
and brain of kainic-acid-induced rats proved its antioxidant 
potential. On a molecular level, cytokines such as IL-1β and 
TNF-α that were found to be elevated were lessened sig-
nificantly by capsaicin (Fig. 3). In addition, apoptotic cell 
death due to kainic acid in the Cornu-Ammonis portion of 
the hippocampus was likely diminished when capsaicin was 
co-administered with kainic acid. This evidence confirms the 
antiepileptic role of capsaicin in rodents [114].

Potentials of Capsaicin on Genes involved 
in Neurological Disorders

Various other studies have made it evident that other factors 
also play a crucial role in neurodegeneration disorders i.e., 
mitochondrial dynamics, inflammation in neurodegenerative 
cascades, glutamate-induced toxicity, and the VR1 receptor. 
Reported studies have demonstrated the protective role of 
capsaicin in neurological disorders by showing their inhibi-
tory actions on it [40, 114, 132, 133, 137, 146, 147]. Capsai-
cin causes activation of the TRPV1 receptor, a non-selective 
cation channel that thereby halts the progression of neuro-
logical diseases. Altered levels of oxidative stress markers 
including nitric oxide, lipid peroxidation, and endogenous 
antioxidants that occupied a significant place in the progres-
sion of diseases such as epilepsy and Parkinson's disease are 
brought back to normal levels. Similarly, elevated cytokines 
and mediated neuroinflammation are minimized. Due to the 
reduced activation of TRPV1, there is less accumulation of 
proteins in specific parts of the brain, thus subsequently ben-
efiting the behavioral impairment in Alzheimer’s disease. 
Capsaicin also has a modulatory effect on signal transduc-
tion pathways (GSK-3β and PI3/AKT), glutamate-induced 
apoptotic neuronal cell death, and calcium influx. Hence, all 
these processes that ultimately lead to neuronal cell death 
are modulated by capsaicin and thereby prevent the initiation 
and progression of neurological diseases (Fig. 3).

The study involved the importance of mitochondrial 
dynamics in axonal degeneration induced by capsaicin was 
done. It was observed that in the capsaicin-treated group, 
there was the inclusion of reduced mitochondrial transport, 
axonal swellings, or the presence of axonal degeneration in 
sensory axons of mice. The different variations in the mito-
chondrial length and transport were due to elevated levels 
of axoplasmic calcium. With capsaicin treatment, aversion 
of mutant dynamin-related protein-1 resulted in enhanced 
mitochondrial length, maintained mitochondrial membrane 

potentials, and diminished axonal loss. But at the same time, 
sustained mitochondrial transport did not help in lessening 
axonal swellings in the drug-treated group. Thus, based on 
these findings, it was concluded that mitochondrial station-
ary site size notably influences the integrity of axons, and 
activation of cationic channels in the axon would inhibit the 
 Ca2+ dependent mitochondrial fission which promotes mito-
chondrial function and axonal subsistence. A study showed 
that capsaicin can be demonstrated as a model that releases 
axons upon cationic overload in neurodegenerative diseases 
[148].

A study was carried out to find out the role of inflam-
mation in neurodegenerative cascades by using organotypic 
hippocampal slice cultures, murine primary microglia, 
and human primary monocytes [149]. The results demon-
strated that capsaicin significantly averted the release of 
 PGE2, 8-iso-PGF2α, and distinctly regulated the levels of 
TNF-α, IL-6 & IL-1β (Fig. 3).

Some genes viz. Transient receptor potential vanilloid 
subfamily member 1 (TRPV1), Tyrosine kinase epidermal 
growth factor receptor (EGFR), and Prostaglandin-endop-
eroxide synthase 2 (PTGS2) are the key targets of capsaicin 
[58, 150, 151]. Pharmacological blockade via capsazepine 
& SB366791, and genetic deficiency of TRPV1  (TRPV1−/−) 
did not prevent capsaicin-mediated suppression of  PGE2 in 
activated microglia and organotypic hippocampal slice cul-
tures. Inhibition of the enzyme  PGE2 was partially due to 
the low levels of  PGE2 synthesizing enzymes, COX-2, and 
mPGES-1. Altogether, it was concluded that capsaicin less-
ens excessive inflammatory events by targeting the  PGE2 
pathway in immune cell models (in-vitro and ex-vivo) [152]. 
These conclusions further confirm the new ways for disease 
management by TRPV1. In an independent molecular study, 
findings from Hwang et al. [150] suggested that capsaicin 
might act as a cocarcinogen in TPA-induced skin carcino-
genesis through EGFR-dependent mechanisms. In a study by 
Wang et al. [151], they have reported that capsaicin appli-
cation to mouse cultured primary sensory neurons induces 
PTGS2 and COX2 upregulation.

Similarly, the VR1 role was explored in the model of 
global cerebral ischemia in gerbils [146]. In ischemia-
induced animals, the EEG total spectral power was nar-
rowed, a hypothermic effect was induced for 2 h, and there 
was a restoration in the relative frequency band distribu-
tion when capsaicin was administered over a range of 0.01, 
0.025, 0.05, 0.2, and 0.6 mg/kg, 5 min after recirculation. 
Soon after day 1 of ischemia, the test drug was found capa-
ble of antagonizing the effect of ischemia-induced hyperlo-
comotion, whereas, after 3 days, it prevented the memory 
impairment demonstrated through a passive avoidance task. 
Finally, at the end of the experiment on day 7, the drug-
treated animals showed a cumulative continuity of 80% in 
pyramidal cells in the CA1 subfield at a concentration of 
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0.2 mg/kg. There was also an observation of a selective 
VR1 antagonist capsazepine, that diminished the protec-
tive effects induced by capsaicin over a dose of 0.01 mg/
kg which concluded the neuroprotective effect of capsaicin 
through VR1 desensitization and present as a valuable lead 
in the approach for interventional pharmacology [146].

The basic mechanism of neuroprotection of capsaicin was 
explored [147]. It was observed that 1 or 3 nmol of capsai-
cin when injected into the peri-infarct area of the MCAO/
reperfusion model, rats showed a reduction in the volume of 
infarct and demonstrated progress in the scoring of neuro-
logical behavior and motor coordination function. Following 
the pre-treatment with capsaicin, there was a decrease in the 
Calcium influx after the glutamate stimulation, whereas the 
expression levels of GluN1 and GluN2B, NMDA receptor 
subunits were found to be at a lower level. The Trpv1 knock-
out abolished the impact of capsaicin on glutamate-mediated 
calcium influx and subsequent neuronal death. Thus, these 
findings confirmed the neuroprotective effect of capsaicin 
[147].

Another study [153] was carried out to observe the role 
of capsaicin on the release of glutamate in the hippocampus 
of a rat using isolated nerve terminals and brain slices. With 
an approximate IC50 of 11 μM, capsaicin reduced 4-ami-
nopyridine-induced  Ca2+ dependent glutamate release in a 
dose-dependent manner in synaptosomal preparations. This 
effect was antagonized by capsazepine, a TRPV1 antago-
nist that colocalized along with the vesicle marker protein 
synaptophysin in double immunostaining. It was observed 
that capsaicin mitigated the elevated calcium concentration 
induced by 4-aminopyridine, whereas glutamate release due 
to capsaicin was prevented only by Cav2.1 (P/Q-type) and 
Cav2.2 (N-type) channel blocker omega-conotoxin MVIIC 
and not by CGP37157 and dantrolene. Furthermore, the 
impact of capsaicin on phosphorylation of protein phos-
phatase calcineurin, and its inhibitor cyclosporine A-induced 
by 4-aminopyridine was enhanced, whereas the inhibitory 
effect of capsaicin on aroused glutamate release was nulli-
fied. Parallelly, there was a decrease in the frequency of min-
iature excitatory postsynaptic currents devoid of its effect on 
amplitude in slice preparations. Hence, it was concluded that 
capsaicin acts through TRPV1 which are localized on the 
hippocampal nerve terminals and result in raised calcineu-
rin activation that consequently shows an effect on voltage-
dependent  Ca2+ channels by inhibiting the entry of calcium 
and further produces a downswing in triggered glutamate 
release [153].

The neuroprotective role of resveratrol and capsaicin 
in glutamate-induced neurotoxicity was considered [154]. 
Cerebral cortical neurons found in the fetus of ICR mouse 
of embryonic day 15–16 after exposure to glutamate for 
15 min, were then administered with capsaicin and resvera-
trol for 24 h. Glutamate-treated neurons showed minimum 

cell viability, which was restored by capsaicin and resvera-
trol treatment. But the highest effect was observed in the 
group of neuronal cells that were treated with both the phy-
tochemicals. This group also reduced glutamate-induced 
oxidative stress and the resultant apoptotic death. On a 
molecular level, the up-regulated levels of cytokines such as 
IL-1β and TNF-α, mRNA levels of cytoplasmic glutathione 
peroxidase, Bcl-xL, and copper/zinc, and manganese super-
oxide dismutase was brought back to a normal level with the 
co-treatment in Fig. 3. The results obtained demonstrated the 
neuroprotective effect of capsaicin and resveratrol. Moreo-
ver, the combined effects of both phytochemicals pave the 
way for a valuable therapeutic option for the mitigation of 
neurological disorders [154].

Liu et al. [155] have performed a gene expression study 
to identify the effect of capsaicin on genes involved in Par-
kinson's disease. A molecular mechanistic study was carried 
out by employing a 6-OHDA- induced Parkinson's disease 
model, Affymetrix Gene Chip Whole Transcript Expression 
Arrays, where 108 genes were differentially expressed after 
the addition of capsaicin to the cell line. It was found that 
capsaicin affected two genes (Actg1 and Gsta2) out of seven 
genes selected for final analysis [155]. Actin is a cytoskeletal 
protein that regulates the ability of cells to divide, move 
and maintain shape with the help of a protein called gamma 
(γ)-actin [156, 157] whereas Glutathione S-transferase 2 
(Gsta2) that belongs to the glutathione S-transferase (GST) 
superfamily encodes enzymes which in conjugation with 
glutathione plays a role in detoxification of several thera-
peutic drugs, carcinogens and several mutagens [158]. 
Capsaicin treatment resulted in down-regulation of Actg1 
(actin gamma) and up-regulation of Gsta2 (Glutathione 
S-transferase alpha 2) which led to increased apoptosis in
the disease cell model. Therefore, it was concluded that by
regulating the expression of these two genes, capsaicin could
reduce apoptosis and protect cells [155].

Adverse Effects of Capsaicin

Even though capsaicin is a widely consumed constituent, 
there is always confusion regarding its safety in topical use 
and consumption due to conflicting studies. Capsaicin, a 
reported mutagen [159] increases cell viability and prolif-
eration of androgen-responsive prostate cancer LNCaP cells 
simultaneously with increased expression of androgen recep-
tors [160].

It was found that when Swiss albino mice were fed with 
0.03% of capsaicin in a semi-synthetic diet, neoplastic 
changes were seen in the liver [161] along with benign poly-
poid adenomas in the caecum [162]. Similar conclusions 
were drawn from studies where chili extract was shown to 
produce stomach and liver tumors in BALB/c mice [163]. 
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Another study detailed the incidence of N-methyl-N-nitros-
oguanidine–induced gastric cancer in rats administered with 
hot chili peppers [164]. Furthermore, significant lung and 
cardiac metastasis were observed in adult mice who were 
injected with syngeneic 4T1 mammary carcinoma cells 
orthotopically and treated with 125 mg/kg capsaicin due to 
systemic denervation of sensory neurons [165].

It has been disclosed that capsaicin has the potential to 
induce gall bladder and gastric cancer [166] as red chili 
powder has been found as a major risk factor for cancer in 
countries like India [167]. From several statistical analyses, 
there has been a strong association noticed between stomach 
cancer and capsaicin [168]. Even jalapeno peppers have been 
noted to produce non-mucosal erosions or other problems 
[169].

Furthermore, capsaicin administered topically in the form 
of creams or spray produces a condition called 'human hand' 
which is a type of contact dermatitis [170, 171] or other 
adverse events including enhancement in the pain threshold 
in patients who suffer from musculocutaneous or neuro-
pathic pain [42].

Conclusion

Neurological disorders such as AD, PD, and Epilepsy con-
sist of loss of neurons and synapses in distinct parts of 
the nervous system and are caused by an amalgamation 
of endogenous, genetic, and environmental factors which 
make it a slow, progressive, and irreversible disease. As the 
phytochemicals exert a protective nature in different 
neu-rological diseases, there is a huge level of 
exploration to determine their potency to manage these 
diseases. Capsaicin, a significant phytochemical obtained 
from chili pepper, has been shown to be effective against 
oxidative damage, strep-tozotocin-induced Alzheimer's 
model, and 6-OHDA-induced Parkinson's disease. It also 
possesses anticonvulsant and neuroprotective effects in 
pentylenetetrazol-induced seizures and global cerebral 
ischemia in the Mongolian gerbil. Since TRPV1 plays a 
dominant role in the protective action of cap-saicin, it is 
very important to understand its significance with relevance 
to the different pathways that lead to neuronal cell death. 
Further drug development with capsaicin as a lead 
compound is urgently needed in order to develop 
analogs that are devoid of the negative consequences as 
discussed in the previous section. Therefore, new drugs 
that target the TRPV1 (capsaicin receptor) open a 
promising horizon of pharmacological advances in the 
years to come for the man-agement of neurological 
disorders.

Advancing analytical techniques are widely being used 
to enhance the knowledge about molecular characterization 
and structure–activity relationship of capsaicin and their 
analogs that are active regarding all the positive effects 
(protection, 

anti-oxidant, anticonvulsant etc.) and devoid of the negative 
effects (carcinogenesis, contact dermatitis, pain threshold 
enhancement etc.). Capsaicin serves to be an important mol-
ecule in medicine, which often gets limited by its low pro-
duction yield and pungency. To rectify these, new strategies 
are being explored that would improve its synthesis in plants 
by maneuvering the supplements or growth conditions. Sim-
ilarly, other methods like in vitro cell culture techniques, 
chemical or enzymatic methods would lead to the production 
of capsaicin or its analogs, which are non-pungent, are also 
being analyzed for their effect. Moreover, exploring newer 
horizons and carrying out proper clinical trials would help 
to bring out the promising effects of capsaicin in the field of 
research, as enough knowledge about capsaicin is still lack-
ing for it to be recommended as a neuroprotectant.
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